海量计算处理
GPU 服务器超强的计算功能可应用于海量数据处理方面的运算,如搜索、大数据推荐、智能输入法等:
深度学习模型
GPU服务器可作为深度学习训练的平台:
1.GPU 服务器可直接加速计算服务,亦可直接与外界连接通信。
2.GPU 服务器和云服务器搭配使用,云服务器为主 GPU 云服务器提供计算平台。
3.对象存储 COS 可以为 GPU 服务器提供大数据量的云存储服务。
选择GPU服务器时首先要考虑业务需求来选择适合的GPU型号。在HPC高性能计算中还需要根据精度来选择,比如有的高性能计算需要双精度,这时如果使用P40或者P4就不合适,只能使用V100或者P100;同时也会对显存容量有要求,比如石油或石化勘探类的计算应用对显存要求比较高;还有些对总线标准有要求,因此选择GPU型号要先看业务需求。
当GPU型号选定后,再考虑用什么样GPU的服务器。这时我们需要考虑以下几种情况:
第一、 在边缘服务器租用上需要根据量来选择T4或者P4等相应的服务器,同时也要考虑服务器的使用场景,比如火车站卡口、机场卡口或者公安卡口等;在中心端做Inference时可能需要V100的服务器,需要考虑吞吐量以及使用场景、数量等。
第二、 需要考虑客户本身使用人群和IT运维能力,对于BAT这类大公司来说,他们自己的运营能力比较强,这时会选择通用的PCI-e服务器;而对于一些IT运维能力不那么强的客户,他们更关注数字以及数据标注等,我们称这类人为数据科学家,选择GPU服务器的标准也会有所不同。
第三、 需要考虑配套软件和服务的价值。
第四、 要考虑整体GPU集群系统的成熟程度以及工程效率,比如像DGX这种GPU一体化的超级计算机,它有非常成熟的从底端的操作系统驱动Docker到其他部分都是固定且优化过的,这时效率就比较高。
作为国内品牌服务器提供商,服务器在线GPU机架式服务器拥有大规模并行处理能力和无与伦比的灵活性。
它主要应用于为计算密集型应用提供足够的处理能力。GPU加速运算的优势就在于它可以一边由CPU运行应用程序代码,一边由图形处理单元(GPU)处理大规模并行架构的计算密集型任务。
——————————————END——————————————