超意图“智见”机器视觉解决方案广泛应用于钢铁智能制造整体解决方案中,通过在钢卷、板材、棒材等生产线中导入视觉检测子系统,推动钢铁制造的智能化升级,助力钢铁企业实现生产流程。以技术体系和组织管理的多维度创新打造高效率、高品质、绿色、安全的智能工厂 。
在 GPU 领域,2022 年无论好坏都是一个重要的里程碑。英特尔兑现了重新进入独立显卡市场的承诺,Nvidia将显卡尺寸和价格推向了顶峰,AMD将 CPU 技术带入了显卡领域。
上文介绍的基于 SR-IOV 硬件虚拟化技术的 GPU,VF 的数量比较固定,且每个 VF 获得的资源是均分的、定额的。将这些 VF 透传给虚拟机后,由于各个虚机的 workload 不同,就可能出现某些 VF 的资源不够用,而另一些 VF 的资源用不完的情况。
对于 GPU 这样的高速 PCIe 设备,虽然也可以借助 virtio 的方式来实现 guest VM 对 GPU 资源的共享,但因为需要 hypervisor 参与 emulation,效率不高。性能更佳的方案是将物理 GPU 以整体或部分的形式,“透传”给 VM。
本文结合实践剖析存储系统的架构及运行原理,深入分析各种存储性能瓶颈场景,并提出相应的性能优化手段,希望对同行有借鉴和参考价值。
GPU的核心竞争力在于架构等因素决定的性能先进性和计算生态壁垒。国内GPU厂商纷纷大力投入研发快速迭代架构,推动产业开放构建自主生态,加速追赶全球头部企业。国产替代需求持续释放叠加国际局势不确定性加剧,AI&数据中心、智能汽车、游戏等GPU需求有望高增,国产GPU迎来发展黄金期,我们看好国产GPU公司的发展与投资机遇。 GPU的核心竞争力在于架构等因素决定的性能先进性和计算生态壁垒。国内GPU厂商纷纷大力投入研发快速迭代架构,推动产业开放构建自主生态,加速追赶全球头部企业。国产替代需求持续释放叠加国际局势不确定性加剧,AI&数据中心、智能汽车、游戏等GPU需求有望高增,国产GPU迎来发展黄金期,我们看好国产GPU公司的发展与投资机遇。 第一,我们从性能和生态2个维度构建了GPU完整的研究体系。1)性能:决定GPU是否“高效”,其中微架构/制程是影响GPU性能的核心要素。2)生态:CUDA构筑通用计算坚固壁垒。 第二,提出在评估GPU性能的指标的重要性上:微架构、制程、流处理器数量、核心频率对GPU性能影响较大。我们详细梳理了GPU的微架构、制程、显存容量/位宽/带宽/频率、核心频率等各类性能参数及重要性程度,并利用“核心数*核心频率*2”公式对性能算力进行量化,揭示可用3DMark、MLPerf 等GPU软件跑分进行相关性能测试评估。 第三,详细拆解了NVIDIA Fermi和Hopper两大典型微架构的具体硬件实现,在顶点处理、光栅化计算、纹理贴图、像素处...